Free Boundary Problems for Tumor Growth: a Viscosity Solutions Approach
نویسندگان
چکیده
The mathematical modeling of tumor growth leads to singular “stiff pressure law” limits for porous medium equations with a source term. Such asymptotic problems give rise to free boundaries, which, in the absence of active motion, are generalized Hele-Shaw flows. In this note we use viscosity solutions methods to study limits for porous medium-type equations with active motion. We prove the uniform convergence of the density under fairly general assumptions on the initial data, thus improving existing results. We also obtain some additional information/regularity about the propagating interfaces, which, in view of the discontinuities, can nucleate and, thus, change topological type. The main tool is the construction of local, smooth, radial solutions which serve as barriers for the existence and uniqueness results as well as to quantify the speed of propagation of the free boundary propagation. Key-words: Elliptic-Parabolic problems; viscosity solutions; free boundary; Tumor growth; AMS Class. No: 35K55; 35B25; 35D40; 76D27;
منابع مشابه
On Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory
In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to...
متن کاملIncompressible limit of mechanical model of tumor growth with viscosity
Various models of tumor growth are available in the litterature. A first class describes the evolution of the cell number density when considered as a continuous visco-elastic material with growth. A second class, describes the tumor as a set and rules for the free boundary are given related to the classical Hele-Shaw model of fluid dynamics. Following the lines of previous papers where the mat...
متن کاملA free boundary problem with curvature
In this paper we are interested in a free boundary problem whith a motion law involving the mean curvature term of the free boundary. Viscosity solutions are introduced as a notion of global-time solutions past singularities. We show the comparison principle for viscosity solutions, which yields the existence of minimal and maximal solutions for given initial data. We also prove uniqueness of t...
متن کاملA two-phase free boundary problem for a semilinear elliptic equation
In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary. We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...
متن کاملGlobal Stability for Thermal Convection in a Couple Stress Fluid Saturating a Porous Medium with Temperature-Pressure Dependent Viscosity: Galerkin Method
A global nonlinear stability analysis is performed for a couple-stress fluid layer heated from below saturating a porous medium with temperature-pressure dependent viscosity for different conducting boundary systems. Here, the global nonlinear stability threshold for convection is exactly the same as the linear instability boundary. This optimal result is important because it shows that lineari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015